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1 Introduction

There is a vast literature, both frequentist and Bayesian, devoted to the question
of deciding whether a contingency table with moderate numbers of counts, say
something like

Co || C
fo 8 3
| 16| 26 (1)

totals || 24 || 29

shows a significant difference between a control sample Cy and a diagnosed
sample C with respect to some feature or test with values fo and f;.

In this note, we briefly review several frequently used methods, noting in
particular the seemingly large discrepancies (previously noted by others) be-
tween the Bayesian and frequentist answers obtained. We then show that the
discrepancies can be explained as an example of (so-called) Lindley’s Para-
dox. Finally we suggest an “Ockham-removed prior”, motivated within a fully
Bayesian framework, that eliminates the discrepancies.

Table (1) is not chosen at random, by the way, but rather is a good example
of the problem that we address. It has a p-value for the two-sided Fisher Ex-
act Test (described below) of 0.0498; its two columns thus appear to be drawn
from significantly different distributions (p < 0.05). A one-sided test (appro-
priate if the prior expectation was that fo would imply suppressed counts in
Cy) would yield an even more significant result, by a factor of two. On the
other hand, a Bayes-factor calculation, comparing a single probability model to
one with independent probabilities for the two columns (with uniform priors for
all probabilities) yields a Bayesian probability that the two columns are iden-
tically distributed of 0.3023; the two columns thus seem to be not significantly
different. Which is the correct answer?



2 Standard Frequentist Approach

Agresti [1] has given an encyclopedic survey of the frequentist literature, which
we will not attempt to repeat here. There is general agreement that moder-
ate count values require so-called “exact” (as opposed to asymptotic) methods.
One can quickly survey the web to determine what methods are most com-
monly recommended as “standard”, and most commonly included in standard
packages.

In brief, the standard approach for a table like (1) is:

1. Choose a test statistic that quantifies the discrepancy with the null hy-
pothesis that there is no association between (Cy, Cy) and (fo, f1). Popular
choices are the Wald statistic and Rao’s efficient score statistic.

2. Choose a method, for example “Fisher’s exact test” or “Barnard’s exact
test”. The choice of a method is equivalent to choosing a distribution of
2 x 2 tables against which to compare table (1). The reason that this is not
entirely straightforward is that the common probability of fo under the
null hypothesis is not known. Different methods are, in effect, different
estimations of this probability.

3. Compute the one- or two-sided p-value (as appropriate), that is, the prob-
ability of finding in the population defined by the method a value of the
test as extreme as that seen.

4. Reject the null hypothesis (of no association) if p < 0.05 (say).

Within this paradigm, the single most popular (and therefore most standard)
set of choices is probably Fisher’s exact test with the Wald statistic. For a 2 x 2
table,

Co Ch

fo m n
fi M—-ml| N—-n (2)

totals M N

the Wald statistic is essentially the standardized difference of the observed prob-
abilities under the null hypothesis,
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where
pr=m/M, p2=n/N, p=(m+n)/(M+N) (4)



(We will be careful not to confuse the p, the common probability under the null
hypothesis, with the notation p that occurs in a p-value test!)

Fisher’s Exact Test compares the T statistic to the distribution of T of all
tables with the same marginals, both column and row. For the example of table
(1), say, this would be all tables of the form

Co Cq
f() m 11—-m
£l 2a=m | 184m (5)
totals 24 29

Since all cell counts must be positive, there are only 12 such tables in this
example. The probability of each table under the null hypothesis is the hyper-
geometric probability, here,
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Because of the small number of distinct tables in the population, only certain
discrete p-values are possible, a widely noted fact that we will revisit below.
Barnard’s Exact Test, proposed two decades after Fisher, was one attempt to
eliminate this artifact. See [5] for a pedagogical comparison of the two methods.
Any of these, or similar, methods is open to the usual criticism of p-tests,
namely that different choices of statistic can give rather different tail probabil-
ities for a given data set. In practice, the differences are rarely large, however.
Since this issue is common to all p-tests, it is always swept under the rug.
More serious is the issue in Step 2 above, namely the (implicit) estimation
of the common probability P under the null hypothesis. The problem with
any such choice is that, in general, it will not be the result of a consistent
estimator on the population from which the table was actually drawn. Thus
the p-values finally obtained are not tail probabilities of the test statistic for the
actual experiment. In no sense is it precisely true that the null hypothesis will
be incorrectly rejected only 1 time in 20. This is a common Bayesian objection
to many frequentist procedures, namely their reliance on assumed (non-unigue)
distributions of results that might have been seen, but in fact were not.

3 Bayesian Approaches

Agresti [2] has surveyed the Bayesian literature in a recent review. Because the
use of a Bayesian methodology in analyzing contingency tables is uncommon,
it is harder to identify a “standard” Bayesian approach. The most obvious and



straightforward approach, namely the use of Bayes factors, is rarely used. The
reason for this avoidance seems to be precisely the issue that we raise (and
resolve) in this note, namely the apparent large discrepancies between Bayes
factor methods and other methods (both Bayesian and tail-test), always in the
demoralizing sense that the Bayes factor is less powerful in disproving the null
hypothesis of no association (i.e., less able to find significant associations).

Jeffreys, in later editions of his book [4], develops the Bayes factor method
for 2 x 2 contingency tables, similarly to the calculation below. He gives two
numerical examples, one of which yields a probability (of the null hypothesis)
0.27, the other a respectable 0.0058. What Jeffreys does not mention is that
Fisher’s Exact Test, applied to the same data, gives probabilities of 0.057 and
0.00053, respectively. Good [3], working a series of examples, notes the discrep-
ancies between tail area probabilities and Bayes Factors, and attempts, with
very limited success, to find an empirical relation between the two. (This note
can be viewed as a more principled approach to Good’s program.)

Suppose H is the (null) hypothesis that the columns are identically dis-
tributed with prob(fo) = p, while H' is the alternative hypothesis that the
columns have different probabilities prob(fo|Co,1) = po,1. Then the Bayes fac-
tor is (see, e.g., [7])

prob(H|D)  prob(D|H) o prob(H)
prob(H’|D) ~ prob(D|H’) ~ prob(H')
___ Joprob(D,p|H)dp  prob(H) o
J prob(D, p1,p2|H') dpidps ~ prob(H')
_ J prob(D|H, p) prob(p|H) dp , brob(H)
JJ prob(D|H', p1, p2) prob(py, p2|H') dpidps ~ prob(H')

From the binomial distribution, we have

prob(D,p|H) = <]\n/;r>pm(1 -p)Mm <Z>p"(1 —pN—n
8
prob(D|H',p1,p2) = <]\n/;r>plm(1 — pp)M—m <Z)p2n(1 e (8)

For now, we take the prior ratio on the hypotheses as unity, prob(H)/prob(H') =
1. While we might well assume uniform priors on p, p;, and p2 in (0,1), a more
general choice is to use the conjugate prior

prob(p/H) oc p~*(1 —p)~*
prob(py, pa|H') o< p1~*(1 — p1) " *p2"%(1 — p2)~

o 9)

where 0 < a < 1. With these choices, equation (7) readily yields

prob(H|D) Bm+n+1-2a,M+N—-m—-n+1-2a)

F

prob(H'|D)  Bm+1—-a,M-m+1—a)B(n+1—a,N-n+1-a)
(10)



where B is the beta function.

In equation (10), one may interpret 1 — a as a constant number of counts
added by the prior to each of the observed counts m, n, M —m, and N — n.
(This is a typical outcome of using conjugate priors.) We will generally take
a = 1/2, but our results are not sensitive to this choice.

We can now readily demonstrate what is the problem that Jeffreys ignored
and Good puzzled over. We define a population of 2 x 2 contingency tables by
the prescription:

e Choose M and N uniformly i.i.d. between 5 and 100.
e Choose m uniformly in 0... M, and n uniformly in 0...NN.

For tables drawn randomly from this population we compute the two-sided
Fisher’s Exact Test (with the Wald statistic) p-value, and also the Bayesian
probability of the null hypothesis from equation (10), that is, F/(1 + F'). The
result is shown in Figure 1. Evident is a strong tendency for the Bayes proba-
bility to lie at values > 0.1, making rejection of the null hypothesis impossible,
even in cases where Fisher’s test rejects the null hypothesis as strongly as 0.005.

While some more fervent Bayesians have rationalized this result as, somehow,
a good thing — an intrinsic conservatism of the Bayes factor — most have instead
substituted different Bayesian methods (as reviewed in [2]) without this flaw.
A simple example is to use a Bayesian quantity like prob(p; > p2) as a tail
statistic (Good’s so-called “Bayes/non-Bayes compromise”). Similar arguments
to those leading to equation (10) give

[ dpidps p1™=%(1 — pr)M—m—apyn=a(1 — py)N-n-e
p1>p2
Bm+1l—a,M—-m+1—-a)Bn+1—a,N—-n+1-a)
(11)
where the integrals must be done numerically for each set of {m,n, M, N,a}.
To get a two-sided tail probability to compare to two-tailed Fisher, we take the
smaller of prob(p; > ps) and prob(pz > p;) and multiply it by 2.

Figure 2 shows the result. Much of the vertical dispersion can be understood
as due to the discreteness of the Fisher Exact Test’s p-values. Simply changing
< to < in the definition of the Fisher test moves many points that lie above
the diagonal to locations below the diagonal. With this caveat, it is fair to
conclude from the Figure that the two tail tests are measuring essentially the
same property of the contingency tables.

The linearity and small dispersion of Figure 2 further suggests that there is
nothing “wrong” with the Bayesian probabilities p; and ps, and that the dis-
crepancy shown in Figure 1 must lie in either the common probability p (which
turns out not to be the case), or in the way that the Bayes factor compares p
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with p; and py (which turns out to be precisely the case).

prob(p1 > p2) =
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Figure 1: The Bayes factor probability of the null hypothesis F/(1 + F) is
plotted against Fisher’s Exact Test p-value (two-tailed) for a sample of 2 x 2
contingency tables. The Bayes factor often fails to reject the null hypothesis,
even when it is strongly rejected by the p-value test.

4 Lindley’s Paradox

Lindley’s Paradox (see [6] for a review of the literature) is a name given to
exactly the situation that we have just seen: Analysis based on Bayes factor
odds ratios can award a high probability to a sharp null hypothesis, even when
that hypothesis is easily rejected by a tail test.

The canonical example of Lindley’s paradox is that of measuring a single
normal variable y with known (small) o, but unknown mean p. The null hy-
pothesis H is that pu has a certain value ug. The alternative hypothesis H' is
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Figure 2: The Bayes tail probability p-values are plotted against Fisher’s Exact
Test p-values (two-tailed) for the same sample of 2 x 2 contingency tables. Some
of the variance seen results from the discreteness of Fisher p-values.
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that it has some other value. We then write (cf. equation 7)

prob(H|D)  prob(D|H) o prob(H)
prob(H'|D) ~ prob(D|H’) = prob(H')

_ prob(D|H) o prob(H)
Torob(DIH’, ) prob(ul ') dp * prob(L)
_ (2m0®) /% exp(—[y — no]*/[207]) prob(H)

= T(2r0®) 7 exp(—ly — uf*/[202])prob(u[H') dji " prob(H')
 (270%) 2 exp(—[y = ol /[20%])  prob()
prob(y|H') prob(H')

(12)

where the approximation is that, for small o, the Gaussian in the denominator
approximates a Dirac delta function.

Attention now focusses on the surviving prior on y in the denominator.
The broader we make our prior on y, the smaller prob(y|H') becomes, and the
more the null hypothesis is favored. The so-called paradox is that as we try
to take the limit of complete ignorance of y — seemingly allowing it to have an



arbitrarily large range — we simultaneously make it impossible to disprove the
null hypothesis that it has the value yq.
Lindley’s paradox is also a good example of “it’s not a bug, it’s a feature!”.

If we take 1
prOb(y|Hl) = Ymin < Y < Ymax (13)

Ymax — Ymin
(and zero elsewhere), then many Bayesians (e.g., [7]) would rewrite the last line
of equation (12) as
prob(H|D)
prob(H'|D)

Ymax — Ymin % pI‘Ob(H)
(2m)~1/2¢ "~ prob(H')

~ exp(—[y — po]*/[20°]) x (14)

They would then identify the second factor on the right as a so-called “Ockham
factor”, by which any arbitrary new parameter added to a theory ought to
be penalized, so as to avoid the overfitting of data. Indeed, the automatic
emergence of Ockham factors in Bayesian calculations is taken as a strength,
not a weakness, of the formalism. Ockham factors play, in a Bayesian context,
the role that Bonferroni corrections play in a frequentist context: both serve to
discount the significance of inferences made from multiple hypotheses.

Notice that the third factor in equation (14) is also a prior, namely the prior
odds ratio between H and H'. This is often taken as unity, meaning that there

is no reason to prefer H over H' a priori. But is unity actually the correct
“neutral” prior?

5 Use of Ockham-Removed Priors to Resolve
the Paradox

The perspective of this note is that there is less here than meets the eye; that
Lindley’s paradox results simply from a confusion between two conceptually
different uses of added parameters; and that the Bayesian framework already
provides the means for disentangling this confusion.

When we add a parameter u to a model in order to fit the data better,
we hope for a narrow posterior probability for its values, which we will likely
summarize as a value and uncertainty. We are disappointed if the posterior
is broad and uninformative. It is of no particular consequence if the posterior
“notches out” (i.e., eliminates) any particular value uo of the new parameter.

On the other hand, when we add a parameter to a model specifically as as
a foil for a null hypothesis value ug, then the situation is completely reversed:
We are not bothered if the posterior on p is broad, and we are not particularly
interested in its value if it is narrow. Rather, we hope for a clear “notch” on
o, such that that particular value can be rejected.

The Bayes factor formalism provides the means for distinguishing between
these two different situations, by allowing us to choose different interpretations
for the third factor, the overall prior odds ratio, in equation (14). In the case
of the first situation, the interpretation given above is appropriate: Unity prior



odds ratio means neutrality on whether to add a fitting parameter. Indeed, a
slight reworking of equations (12) and (14) would yield the Bayes Information
Criterion (BIC) as an indicator of whether an additional model parameter is
favored. The “automatic” Ockham factor is entirely appropriate in this situa-
tion.

In the case of the second situation, however, there is no reason for us to
be slaves to the previous meaning of the overall prior. Rather, knowing that
our interest is in disproving a null hypothesis, we are free to choose a prior
that corrects for (i.e., “undoes”) the Ockham factor. In other words, the truly
neutral prior for this situation is the inverse of the Ockham factor, favoring
the alternative hypothesis. The distinction is between parameter fitting (with
a possibly variable number of parameters), on the one hand, and significance
testing on the other.

The population of 2 x 2 contingency tables defined above provides a nice
test of our claims. The only complication is that there is a parameter p in the
null hypothesis, and two parameters po,; in the alternative hypothesis. Thus
our neutral prior for significance testing will be the ratio of the two (estimated)
Ockham’s factors.

For the null hypothesis, the Ockham factor Ky is estimated as the range of
p (that is, unity) divided by an estimate of the uncertainty in p,

Vb1 = p)/(M + N)

where
p=(m+n)/(M+ N) (16)

For the alternative hypothesis, the Ockham factor K is estimated as the area
of the unit square, divided by the product of the uncertainties of py and p;.

K1 ~ = — = (17)
Vo(1 = po)pi (1= p1)/(MN)
where
ﬁOEm/Ma ﬁl En/‘]\] (18)
The neutral prior is thus taken as
prob(H) K
— -4 19
prob(H') K (19)

Figures 3 and 4 show the comparison between the Bayes factor probability
with Ockham-removed prior and either the two-tailed Fisher Exact Test (Figure
3) or, from equation (11), the Bayesian tail probability (two-tailed). The latter
figure is most enlightening, since it does not have the discreteness artifacts of
Fisher’s test.

With the Ockham-removed prior, there is a very tight agreement between
the tail probability and the Bayes factor probability, extending from small p-
values all the way up to almost unity. The curvature near p = 1 is readily
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Figure 3: Use of an Ockham-removed prior (equation 19) brings the Bayes factor
method into good agreement with Fisher’s Exact p-value. The discrepancy near
p = 1 is because any two-tailed test has the value 1 when its tails “cross”, while
the Bayes factor method never assigns probability 1 to the null hypothesis.

explained as an artifact of tail tests: As the tail probability increases, it even-
tually crosses 50% (so that the two-tailed probability reaches unity), at which
point the definition of the tails is reversed. Thus there will be a substantial
population very near unity. For the Bayes factor probablity, on the other hand,

unity probability for the null hypothesis is a limiting case that is never reached.

6 Conclusions

When applied to contingency tables, Bayes factor methods have long been
known to support the null hypothesis (of no association), even when tail tests
strongly indicate otherwise. This tendency is an example of Lindley’s Paradox,
and is due to the so-called Ockham factor that naturally arises in Bayes factor
methods.

Ockham factors are appropriate in parameter-fitting applications, as safe-
guards against overfitting. In such applications, they are closely related to the
Bayes Information Criterion (BIC) for deciding whether to add a new parame-
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Figure 4: Same as Figure 3, but using the Bayesian tail probability (equation
11) instead of the Fisher test, thus eliminating the variance due to the latter’s
discreteness. As in Figure 3, the curvature at the upper left is an artifact of the
tail test when its tails cross.

ter.

However, Ockham factors are not appropriate when an added parameter is
simply a nuisance “foil” against which the significance of a null hypothesis is
to be tested. In such a case, the “neutral” prior odds ratio is not unity, but is
rather the inverse of the Ockham factor.

If we use an “Ockham-removed” prior, then tail tests and the the Bayes factor
method give very nearly identical results. We should not expect ezactly identical
results, even on average: On the frequentist side, the choice of a different tail
statistic will give different results. On the Bayesian side, our estimation of the
Ockham factor is only approximate, and is open to discussion at the level of
factors close to unity.
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